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CHEBYSHEV-VANDERMONDE SYSTEMS 

LOTHAR REICHEL AND GERHARD OPFER 

Dedicated to the memory of Lothar Collatz 

ABSTRACT. A Chebyshev-Vandermonde matrix 

V = Pj(Zk),n k E C(n+?)x(n+l) 

is obtained by replacing the monomial entries of a Vandermonde matrix by 
Chebyshev polynomials pJ for an ellipse. The ellipse is also allowed to be 
a disk or an interval. We present a progressive scheme for allocating distinct 
nodes Zk on the boundary of the ellipse such that the Chebyshev-Vandermonde 
matrices obtained are reasonably well-conditioned. Fast progressive algorithms 
for the solution of the Chebyshev-Vandermonde systems are described. These 
algorithms are closely related to methods recently presented by Higham. We 
show that the node allocation is such that the solution computed by the pro- 
gressive algorithms is fairly insensitive to perturbations in the right-hand side 
vector. Computed examples illustrate the numerical behavior of the schemes. 
Our analysis can also be used to bound the condition number of the polynomial 
interpolation operator defined by Newton's interpolation formula. This extends 
earlier results of Fischer and the first author. 

1. INTRODUCTION 

Let Ep, for some p E [0, 1], be the closed ellipse with boundary curve 

(1.1) E {:={e't +Pe-it :O< <2 }, i:= . 

Define the polynomials in z = w + pw 

(1.2) f p0(z) := 1, 
1 

pj(z):= w +(p/w); j 1, 2, 3. 

It can easily be shown (see, e.g., Smirnov and Lebedev [17, Chapter 5]) that the 
pj are Chebyshev polynomials for Ep with leading coefficient one, i.e., among 
all monic polynomials of degree j, pj is the unique polynomial of minimum 
uniform norm on Ep . 
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Example 1.1. Let p 0. Then E. is the closed unit disk, and the pj are the 

monomials pj(z) = z , > 0. 5 

Example 1.2. Let p := 1. Then 0El = E, is the interval [-2, 2], and 
the pi are the 'ordinary' Chebyshev polynomials on [-2, 2], i.e., pj(z) = 

2 cos(j arccos(z/2)), j > 1. E 

Chebyshev- Vandermonde matrices (henceforth abbreviated CV matrices) 
V = Vp = [Vjk]j, k=O0 Vjk Pj (Zk), arise naturally in polynomial interpola- 
tion problems when the basis (1.2) is used for fnlu the set of polynomials of 
degree at most n. Let (zk, fk) E 022, 0 < k < n, be the given data, where 
the nodes Zk are assumed to be pairwise distinct. The computation of an in- 
terpolating polynomial qn E f-n such that qn (Zk) = fk 0 < k < n, in the 
form 

n 

(1.3) qn (Z) =E ajpj (Z) 
j=0 

can be accomplished by solving a dual CV system, namely 

(1.4) pa = f 
T 

where a:= (a, a,.. , an)T and f := (ffg A i ... f fn)T . Primal CVsystems 

(1.5) Vpa = g5 g := (go 5 91 5 ... * *9Tn) 5 

arise in the computation of weights of interpolatory quadrature rules with nodes 
Zk when the polynomial basis (1.2) is used. We note that the CV matrix V 
simplifies to an 'ordinary' Vandermonde matrix when p = 0 in (1.2) (cf. Ex- 
ample 1.1). 

Our interest in the basis (1.2) and in fast solution methods for the linear sys- 
tems of equations (1.4) and (1.5) stems from our ability to bound the growth 
with n of the condition numbers of the CV matrices VP for certain progres- 
sively allocated nodes on OEp. Introduce the condition number 

(1.6) Kp(Vp) := ||VpIIpIIV JJp5|p 

where 11 11p denotes the usual matrix p-norm on C(n+ 1) x (n+ 1) [12, p. 56]. We 
show in ?3 that for our progressively determined nodes the condition number 
Ko (V ) grows at most polynomially1 with n for any (fixed) p E [0, 1). For 

p = 1, the condition number K, ((V,) grows at most like nO(logn). The latter 

IThis bound has for p = 0 recently been improved by A. C6rdova, W. Gautschi, and S. Rusche- 
weyh (see Addendum at the end of this paper). 
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bound should be compared with recent results by Gautschi and Inglese [8], who 
show that for real nodes Zk the condition number Kc (VO) generally grows at 
least like 0(2n/2) with n . Related results and examples can also be found in [9, 
10, 1 ]. These results indicate that unless special care is taken when allocating 
the nodes Zk, the condition numbers of Vandermonde and CV matrices in 
general grow exponentially with n. 

The numerical solution of the linear systems of equations (1.4) and (1.5) has 
received considerable attention when p is an 'ordinary' Vandermonde matrix, 

i.e., when p = 0. Then the systems (1.4) and (1.5) can be solved in 0(n2) arith- 
metic operations by methods of Bjorck and Pereyra [1] and Tang and Golub 
[18]. This operation count compares favorably with the 0(n3) arithmetic op- 
erations required for the solution of (1.4) or (1.5) by Gaussian elimination. 
Recently Higham [13, 14] presented (nonprogressive) algorithms for the solu- 
tion of Vandermonde-like linear systems of equations involving polynomials 
that satisfy a three-term recurrence relation. These algorithms are obtained by 
modifying the nonprogressive algorithms for 'ordinary' Vandermonde systems 
in [1]. 

Our scheme for progressively determining nodes Zk makes it attractive to 
use progressive algorithms for the solution of the CV systems (1.4) and (1.5); 
i.e., the solution of ( 1.4) and ( 1.5) for n = m + 1 is computed by modifying the 
solution obtained for n = m. Progressive algorithms allow us to conveniently 
solve (1.4) and (1.5) for increasing values of n until the computed interpo- 
lation polynomial qn approximates a given function sufficiently accurately, or 
until the determined quadrature rule yields a small enough integration error. In 
?2 we modify progressive algorithms of Bjbrck and Pereyra [1] in order to ob- 
tain progressive CV solvers that require 0(n 2) arithmetic operations and 0(n) 
storage locations for the solution of (1.4) and (1.5) for any p E [0, 1] and 

VP E C(n+X)x (n+l).If p = 0, then our progressive CV solvers simplify to the 
progressive Vandermonde solvers in [1]. 

The error propagation of CV solvers does not only depend on the condition 
number Kp(1p), but also on the ordering of the nodes Zk For instance, let 
p = 0 (unit disk case, cf. Example 1.1) and let the nodes Zk, ? < k < n, 
be some enumeration of the n + 1 roots of unity {exp(27zik/(n + 1))}In. 
Then the Vandermonde matrix VJ is a scalar multiple of an orthogonal matrix, 
and therefore K2(J0) = 1. However, if Zk = exp(2rik/(n + 1)), the error 
in the solution due to propagated roundoff errors grows rapidly with n (see 
Figures 4.2.2 and 4.2.4 of ?4). On the other hand, the CV solvers yield a fairly 
small amplification of roundoff errors if the Zk are ordered in such a way that 

the nodes in each subset {Zk}k0, 0 < I < n, are 'approximately uniformly 
distributed' on the unit circle (see Examples 4.2-4.3 of ?4). Such an ordering 
is given by 

(1.7) zk := exp(27rick), 0 < k < n, 
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where {ck}?? is the van der Corput sequence defined as follows. Let the non- 
negative integer k have the binary representation 

00 

(1.8a) k= E k12, k. E {O, l}. 
j=0 

Then Ck is given by 
00 

(1.8b) Ck:= k 2 i I 

j=0 

Table 1.1 shows some values of Ck and arg(zk) defined by (1.7) and (1.8). 

TABLE 1.1 
The van der Corput sequence 

k 0 1 2 3 4 5 6 7 

4 2 6 1 5 3 7 

Ck 0 

27rc 0 7t 37r ir 5r 37r 77r 
27rck 0 2 2 4 4 4 4 

Properties of the van der Corput sequence are discussed by, e.g., Hlawka [ 1 5, 
p. 93], and properties of the nodes (1.7) are considered in ?3, as well as in [6, 
7]. In ?3 we use the van der Corput sequence to allocate nodes Zk on Ep as 
follows. If 0 < p < 1, then we let a E R be an arbitrary but fixed constant 
and define 

(1.9) Zk := exp(2lri(ck + a)) + p exp(-27ri(Ck + a)) E OEp) 

k = 0, 1,2I. 

If instead p = 1, then we define nodes on [-2, 2] by 

(1.10) {z:= ( -2, 
Zk : = 2 cos(7ck-1), k = I1, 2,~ 3,.. 

Example 1.3. Let / > 0 be an arbitrary integer. Assume first that p = 0. Then 

the set of nodes {Zk }12j defined by (1.9) is a set of equidistant points on the 

unit circle. More generally, for any fixed p E [0, 1), the set of nodes {Zkf}z2- 
is a set of so-called Fejer points on &Ep . Fejer points are defined in, e.g., [17, 
Chapter 1] and [6, 7]. o 

Example 1.4. Let / > 0 be an arbitrary integer. Then the set of nodes {Zk}k=O 
defined by (1.10) is the set of extreme points of the Chebyshev polynomial 
p2 (x) :=2cos(2' arccos(x/2)) for the interval [-2, 2]. n 

In ?3 we present bounds for the propagated error due to errors in the right- 
hand side for the CV solvers when the matrices Vp are defined by the nodes 
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(1.9) or (1.10). These bounds grow slower than exponentially with n. If w( 
would use Ck := k/n in (1.9) and (1. 10), then the error in the computed solution 
would grow exponentially with n. This is illustrated by computed examples if 
?4. 

We finally remark that for afixedvalue of n, and the nodes (1.9) or (1.10) 
the solution of (1.4) can be computed by the fast Fourier transform method ir 
O(n log n) arithmetic operations (see, e.g., Ellacott [4] for a discussion on thc 
use of nodes (1.9)). However, it is difficult to make this approach efficient in E 
progressive algorithm. 

2. PROGRESSIVE ALGORITHMS FOR CV SYSTEMS 

This section describes progressive algorithms for the solution of linear sys- 
tems (1.4) and (1.5), and introduces notation to be used in the analysis of ?3. 
Our derivation of the algorithms follows closely the derivation by Bjorck and 
Pereyra [ 1 ] of progressive algorithms for the solution of 'ordinary' Vandermonde 
systems. 

Let (zk, fk) E 02 0 < k < n, be given data with pairwise distinct nodes 
Zk. We wish to compute the coefficients a of the polynomial 

n 

(2.1) q ()=Eaw~pi (Z) 
j=0 

which is uniquely determined by qn (Zk) = fk' 0 < k < n. Following [1], we 
first express qn in Newton form 

n I-i n-- 

(2.2) qn(Z) = ,Cn j (Z-Zk) = q) ( 
j=0 k=O k=O 

where empty products are understood to have value one. Assume that the co- 
efficients a(n-i) of qn- are already known, and write the product on the right 
in formula (2.2) as a linear combination of the polynomials pj, i.e., 

n n-1 

(2.3) 

Eb(n) nn- 
jp (z)=F(z - Zk). 

j=O k=O 

In order to determine the coefficients b(n), we write (2.3) in the form 

n n-2 n-i 
(2.4) Eb (n)pz) =(Z1Zni) F(ZZi) = (Z-Zni)bnipj(Z), 

1=0 1=0 j=0 

and assume that the coefficients b(n 1) are already known. The b(n) can now be 

determined by substituting (1.2) and z = w + pwi- into (2.4), and comparing 
coefficients of equal nonnegative powers of w on the left and right. We obtain 
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in this manner, for n > 2, 

( b(n) =-Z b(n-l) + 2Pb(n- 1) 
10 n-i 0 1 

b(n) =b(nl) z b(n- 1) +pb(n-) l<j<n-2, 
j bj-1 n-ib I oj+1'j< 

2 

b(n) =b(n-1) _ z b(n-1) 
1 

- n-2 n-i n-i 
b(n) =1. 

Finally, substituting (2.1) and (2.3) into (2.2) and comparing coefficients of the 
p1 yields expressions for the a(n) in terms of the coefficients ain~l) 

a( O) =fo 0 A0 
I 

a(n) = a (n-l) + (n)b(n) j=0, 1, ..., n-1, 

ann) = 4n)b n) 

Combining the above formulas gives rise to the following algorithm. 

Algorithm 1. Progressive algorithm for the solution of dual CV systems. 
Data: p; (znfn) n==01,2,. 

(0). - . (0)._A 
CO *- f0, aO *- A0 
for n := 1, 2, 3, ... until no more nodes do 

: compute divided difference cn): 
C~n) :=n; 

for j:= n - 1, n -2, ..., 0 do 
[c(n) (c(n+) - Cn 1))/(Z - 

compute coefficients b(n). 
if n = 1 then 

bo)=zo; b(l):=1 
else 

b(n) : 2pb(n-) )Z (n-1) 

for j:=1,2,...,n-2 do 
I b(n) b= b(n 1) bZ(n- 1) + pb(n-1); 

bnn)1 := bn (n-) _Zn- b(n- l) ; b (n) =1 

compute coefficients a(n): 
for j:=0 1, ... n- 1 do 
a(n) : n- 1) + c(n)b(n); 

a(n) *_ c(n) . 
L n CO 0 

We remark that the nodes in Algorithm 1 are arbitrary pairwise distinct nodes. 
The value of p determines the polynomial basis. Two FORTRAN subroutines 
for Algorithm 1 are listed in [16]: one for complex nodes and 0 < p < 1 , using 
complex arithmetic, and one for the important special case of real nodes and 
p = 1 , using real arithmetic only. The codes are available from the authors. The 
subroutines require 0(n) storage locations in order to compute the coefficients 
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{aSW)}>n of (2.1). The operation count for computing these coefficients by the 
code for real nodes and p = 1 is -n2 + 0(n) multiplications or divisions and 
2n2+ 0(n) additions or subtractions. If we compute the coefficients _a(n) n 

by the code for complex nodes and 0 < p < 1 , and convert complex arithmetic 
2 

operations into real ones, then 1 On + 0(n) real multiplications or divisions are 
required. This operation count is based on the observation that one complex 
multiplication takes three real multiplications, and one complex division takes 
six real multiplications or divisions. 

We now turn to the derivation of a progressive algorithm for the solution of 
primal CV systems (1.5). Following the approach used in [1] for the derivation 
of Vandermonde solvers, we first make a matrix interpretation of Algorithm 1. 
The matrices introduced will be used in the error analysis of ?3. 

Let m be an arbitrary integer larger than or equal to n. For 0 < k < m, 
define the matrices 

1 0 ... 0 

Oand?m ndlt.. 

a :=iag0,a1, ...,a1, ,OO,...) ,O eC+-Z)0* , Z O Znmkl 

E~~~~~~~~~~~~~~~~~~~M <:() x (m+ l) 

where~ Ejdntsteiett mti fodrj nrouetecrdne 
vetr jieeji h (+ls clm f ml.Thntediie ifeec 

Introduce l the trdigoa matrices ) Z+2Z)-I (zM- mk- 

vetr j := i *. jiste( 1) -Zt coum of I+I he thldvied ifernc 

O i2 ... 0 1 -j 

a =(Oa , nn?? ,? E C , O < n <mI 
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where the b(n) and a(n) are defined by (2.3) and (2.1), respectively. Then 
J I 

(2.6) fi(n) = Wn-1 Wn-2 ... oeo0 1 < n < m, 
.(n) -(n-i) 'i~n) (n) -in-1) 

(2.7) a =a + c0 = a + nf 0 < n < m, 

where 

f Sn =Wn- 1Wn-22... Woeoe DnILn IDn-2Ln2 
.. 

DOLO, 

(2.8) 1 l<n<m, 
T 

SO =eoeo 

and a(1) 0. Hence, 
n 

(2.9) i (n) = S f, 1 < n < m. 
j=0 

Let V denote the CV matrix of order m + 1 defined by the node set zjim 
and p E [0, 1]. It follows from (1.4) and (2.9) that 

m 
(2.10) V_ = ES5 

j=0 

and therefore 
m 

(2.11) V-1 =E T 
1=0 

From (2.11), and the fact that the W. commute, we obtain the following algo- 
rithm for the solution of (1.5): 

Algorithm 2. Progressive algorithm for the solution of primal CV systems. 
Data: p; (znfn),n=0,1,2,... 
fo := fo; a4) := fo; uz4):= 1; 

for n := 1, 2, 3, ... until no more nodes do 
: compute f(n) := eT WT WT ... * f n 0 0o 1 n 
f(n).: fn 

for k := 0, 1, ..., n - 2 do 
L fn)1 = fn) - Zkf n 1) + pf-n_2). 

-if k = n - 2 then f1k+ = k+ + P k 
f(n) . f(n) - Z (n-f1). 
Jn *-n-l Zn-I n-1 

compute u(n) = (1/W(n), l/W(n), .., l/W n) T where 

W(n) = (W n), W(n) ... , Wvn))T = Lo'DOLTD1 * L TiDnien 

U(n) 
for k :=0 1,..., n - 1 do 

k zk - n)Uk n) 
| n) =n(Zn-Zk ) ); 
LUn (Zn Zk)Un ; 
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I: compute a(n) =a(n-1) _ (n)f(n). 
for k := 0, 1, ...,n - 1 do 

La(n) := a(n -1) + (n)IU(n); 

L n ~n (n) _ n = n tn 

Two FORTRAN subroutines for Algorithm 2 are listed in [16]: one for com- 
plex nodes and 0 < p < 1, and one for real nodes and p = 1. The codes 
are available from the authors. Similarly as for Algorithm 1, the nodes for Al- 
gorithm 2 are assumed to be pairwise distinct but otherwise arbitrary, and p 
determines the polynomial basis (1.2). 

3. CONDITION NUMBER BOUNDS 

In this section we assume that the nodes Zk are given by (1.9) or (1.10). We 
derive bounds for the rate of growth with n of the condition numbers (1.6) of 
the CV matrices VP of order n + 1. Also, we present bounds for propagated 
errors due to errors in the right-hand side vectors in (1.4) and (1.5). These 
bounds are derived by bounding the quantities computed by Algorithms 1 and 
2; i.e., in order to bound Vp , we bound the mapping from the right-hand side 

vector in (1.4) to the divided differences cn); in (2.2), and the mapping from 
the divided differences to the solution vector a. Our analysis extends previous 
results in [7] on bounds for the condition number for the Newton interpolation 
formula. This application will be discussed in Remark 3.1 below. 

Introduce the mappings MI: Cn+1 __ Cn+1 and M2: 0fl+1 0n+1 defined 
by 

(3.1) ~~~~~~~(n) (n) (n) T (3.1) Mlf: c=(C6 cl c. .c . Cn ) c 

(n) (n) (n) T 

where the c( are the divided differences of the Newton form (2.2), and a 
solves (1.4). By using the orthogonality of the pj with respect to one of the 
inner products 

(3.3a) (P, 5 T2)p = T f (z)T2(Z)lz2 - 4pK 1/2 dzJ, 0 < p < 1, 

(3.3b) (TI, 'P2)p : f2 | P1 (x)TP2(X)IX - 41/ dx, p = 1, 

we can bound the mapping M2 in a fairly straightforward manner. The deriva- 
tion of a bound for Ml requires more work and will be discussed first. Most 
Of the proofs are just outlined; details can be found in [16]. 

Equip C n+1 with the uniform norm, 
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and let IIM IIo denote the induced operator norm. In order to bound IM IMlK 
(n) we first note that the divided differences Cn can be written as 

k=O HI-=O, 1#k(Zk z1) 

(see, e.g., Davis [2, ?2.6]). A lower bound for the products in (3.4) was derived 
in [7] for Zk given by (1.9) and 0 < p < 1 . This bound is used in the proof of 
the following theorem. 

Theorem 3.1. Let the nodes Zk I 0 < k < n, be defined by (1.9) for an arbitrary 
constant a e ER, and let 0 < p < 1. Then there are nonnegative constants 
dl' d2 depending on p, but independent of n, such that 

(3.5) IIM, 1IK < dl(n + 1)d2 n > 1. 
Proof. By (3.4), 

iij 

(3.6) maM111_ = max lcilKo < max Zk - zI 
IlfiK, O~j~n k=0 1=0 

lk 

The right-hand side of (3.6) can be bounded by applying Lemma 2.5 of [7], and 
(3.5) follows. 0 

In a sequence of lemmas we now present some auxiliary results that we use 
to bound IIM1lIKI for p = 1 and the nodes (1.10): 

Lemma 3.1. Let the nodes Zk be defined by (1.10). Then 

2' 

(3.7) f > 21+Z 0 < k < 2' 
j=0 
j54k 

for any integer I > 0. 
Proof. Let Un (x) := sin((n + 1)0)/sin 0, where x = cos 0, denote Chebyshev 
polynomials of the second kind. Then 

2/ 

(3.8) fl(Z - zj) = (z_ -4)U21 (2) , -2 < z < 2. 
j=o 

By evaluating, and then estimating, the derivative of (3.8) at z = Zk we obtain 

(3.7). 0 

Let the nodes Zk be defined by (1.10). Then Lemma 3.1 yields 

n 2/ 

(3.9) FIz k-zhI1?2 1 1 IZk-Zj, Ojkjn, 

i=0 j=n+ 1 
jI4k 

where as usual the empty product is defined to have value one. The lemma 
below bounds the right-hand side of (3.9). 
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Lemma 3.2. Let the nodes z be defined by (1. 10) and assume that 1 < n < 2. 
Then 

2' 

(3.10) 11 IZk-ZmI < 2(. 
m=n+1 

Proof. The bound is obtained by partitioning the product (3.10) into subprod- 
ucts, each of which contains factors I - Zm I with nodes Zm that are distributed 

like the first 21 points determined by (1.10) for some integer I > 0. Such a 
partitioning is described by [6, Lemma 2.4]. Each subproduct can be bounded, 
and (3.10) is obtained. 0 

We are now in a position to show a result for the nodes (1.10) analogous to 
Theorem 3.1. 

Theorem 3.2. Let the nodes Zk I 0< k < n, be defined by (1.10), and let p = 1. 
Then 

(3.11) JIM, 110 < 2n 3+1092 n n >1 
Proof. From (3.6) we obtain 

(3.12) JIM,1IK <? max Z IZk ZmlK 
0?]~ k=0 m=0 

m54k 

=max 1, max IZk- zm 

m50k 

Let I > 0 be the unique integer such that n < 21 < 2n. An application of 
(3.7) and (3.10) yields 

21 
<y-n H t1+1 IEZk - ZmI max E r JJIZk - ZI= maxE L 2 ~ k 

l?I~flk=O O 1?1?n 2m-m k - 

m-k -, 

<max 2<Z 
max 2~1 

Izk - ZmI max2 
-lj- k=O m=j+ - - k=O 

111 1 /+09 = (n + 1)2" l < -(n + 1)(2n)' < (n + 1)n+lg, n > 1. 

Substitution of this inequality into (3.12) shows (3.1 1). 0 

Remark 3.1. In [7] the stability of the Newton interpolation formula is discussed 
for interpolation at nodes on a smooth Jordan curve. The nodes considered are 
Fej&r points ordered by the van der Corput sequence, such as the nodes (1.9). 

A mapping T is defined that maps the vector f := (fo, fi, ... , fn)T to the 

polynomial qn E -n in Newton form (cf. (2.2)). The range and domain of T 
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are equipped with the uniform norm, and it is shown in [7, Theorem 2.6] that 
limn cond(T) 1/n = 1 where cond(T) denotes the condition number of T. 
By using Theorem 3.2, this equality can also be shown when interpolation is 
carried out at the nodes (1.10). This result follows by substituting (3.1 1) into 
the proof of [7, Theorem 2.6]. 0 

We now derive a bound for JIM21IK. This is achieved by first bounding the 
products Hlij(z - zk) in the Newton form (2.2), and then using the orthogo- 
nality of the pj with respect to one of the inner products (3.3). 

Lemma 3.3. Let 0 < p < 1 and let the nodes Zk, 0 < k < r, be defined by 

(1.9). Then 

r-1 

(3.13) f Iz-zkl?4r2, r> 1, zEE. 

k=O 

If; instead, the nodes Zk , 0 < k < r, are defined by (1.10), then 

r 

(3.14) 1 IZ - ZkI < 4rlog2 r > 1, z E [-2, 2]. 

k=O 

Proof. The product (3.13) is partitioned into subproducts, each of which con- 
tains 21 nodes Zk that are distributed roughly like the first 21 nodes (1.9). 
Such a partitioning is described by [6, Lemma 2.3]. These subproducts can be 
bounded, and (3.13) is obtained. The proof of (3.14) is analogous. o 

We are now in a position to bound the mapping M2. The bounds show that 
the norm of M2 grows fairly slowly with n. 

Theorem 3.3. Let the nodes Zk, 0 < k < n, be defined by (1.9), and let 0 < 

p < 1. Then 

(3.15) JIM211K0 < 8n3, n > 2. 

If, instead, the nodes Zk I 0 < k < n, are given by (1.10), and p = 1, then 

(3.16) JIM211 < 1n2+'092n n > 2. 

Proof. Let the values of p in the definition (1.2) of the polynomials pj and in 
the inner product (., *.), given by (3.3) be identical. Then 

(3.17) (Pj 5Pk),o= 
0 k =A j, 1 < (pj 5pj)p < 2, j > 0 

We obtain from (2.1) and the orthogonality of the pj that 

(3.18) a(n) = (qn < j < n. 

Now (3.2), (3.17), and (3.18) show that 

(3.19) IIM21100 = max lallK < max max I(qn 5 Pj)PI IIcIK.=1 jjcjjK=1 O?I--n 
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Substituting 

(3.20) I(qn, Pi),I I max n (Izmax p(z)I, max pj(z)l < 2, 

and (2.2) into (3.19) yields 
n j-1 

(3.21) IIM2IK < 2 max max Iqn(Z)i < 2 max EIz -ZkI. 
-1IcII=1 z9EOE zEEP=OE k=0 

The right-hand side of (3.21) can be bounded, using Lemma 3.3, and the theo- 
rem follows. 0 

We note that formulas similar to (3.15)-(3.16) are valid also if the Chebyshev 
polynomials pj are replaced by polynomials that belong to some other family of 
orthogonal polynomials, such as Legendre polynomials. The proof of Theorem 
3.3 only requires that an inequality of the form (3.17) is valid. 

Theorem 3.4. Let V E C(n+l)x(n+l) .Assume that 0 < p < 0, and let the nodes 
Zk be given by (1.9). Then there are constants c and d depending on p, but 
independent of n, such that 

K(V) < cnd, n > 1. 

If, instead, p = 1, and the nodes Zk are given by (1.10), then 
T 5+21 n>1. 

K00(j J) < 40n log2n n > 1. 

Proof. From the second inequality in (3.20) it follows that II Jp TIoo < 2(n + 1) . 
The factorization Jp T = M2M1 and Theorems 3.1-3.3 yield bounds for VpT 
and the theorem follows. 0 

Theorem 3.4 shows that the condition number grows slower than exponen- 
tially with n for nodes (1.9) and (1.10). The bounds in Theorems 3.1-3.4 are 
not sharp, however, and the numerical experiments of ?4 display a quite modest 

T 
-11.cnbob growth of KOO (Vp ) with n. Bounds for Ko (Vp) = IIJI VpII ooIIVp can be ob- 

tained by Theorem 3.4 and the observation that for any matrix A E C(n+l)x(n+l) 

(3.22) IIAT1 00 = 1hAIl1 < (n + 1)IIAIIoo. 
We turn to the propagation of errors in the right-hand side vectors in (1.4) 

and (1.5) by Algorithms 1 and 2. A comparison of (2.5)-(2.8) with (3.1)-(3.2) 
yields, for n > 1, 

enDn-1Ln-Dn-2Ln-2 ... DoL0 = eOMA, 

(3.23) Wn- 1 Wn-2 * * Woeo = M2eOX 

Sn = M2e0eTM1. 

The following theorem shows that the propagated errors in the solution vectors 
of (1.4) and (1.5), due to perturbations in the right-hand side vectors f and 
g, grow slower than exponentially with n. We remark that for many distri- 
butions and orderings of nodes Zk, the propagated error does, indeed, grow 
exponentially with n (see the numerical examples of ?4). 



716 LOTHAR REICHEL AND GERHARD OPFER 

Theorem 3.5. Let 0 < p < 0, and let the nodes Zk be given by ( 1.9). Then there 
are constants c1 and dl independent of n such that 

f n n 

max { IISji 11 <c ndl 

If; instead, p = 1 , and the nodes Zk are given by (1. 10), then there are constants 
c2 and d2 independent of n such that 

{ n n 
maxZ E IISuI Z 1sfE l } < c2nd? log2 (n) 

tj=O i=Q ) 

Proof. The proof follows from IISojIjx = 1 , bounds for IIM1lII and IIjM21., 
and (3.22)-(3.23). 0 

4. NUMERICAL EXAMPLES 

The computed examples of this section illustrate the results of ?3. All ex- 
amples have been computed on an IBM 3090VF computer. Throughout this 
section the parameter a in (1.9) is set to zero. 

Example 4.1. This example shows K2( (V) (= K2( )) as a function of n for 
different values of p, where 9 E 0(n?l)x(n?l) The condition numbers K2(Vp) 
have been computed in double precision arithmetic, i.e., with 15 significant 
digits, using the subroutine ZSVDC of UNPACK [3]. Figure 4.1.1 illustrates 
the oscillating behavior of n -+ K2( JO) I where V/ is defined by the nodes (1.9). 
The condition number K2(VO) is smallest when n is such that the set of nodes 
{Zk}k0 can be written as the union of only a few disjoint sets of equidistant 
nodes. For instance, if n = 21 - 1 for some integer / > 0, then the Zk are the 
nth roots of unity and Vo is orthogonal, i.e., K2(VO) = 1 . 

fZ2(VO) 

16 

12 

8 ; ~ 

4 

0 
0 32 64 96 128 

FIGURE 4.1.1 
Condition number Kc2(V') as a function of n 
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1og(K 2(V1))/log2(n + 2) 

0.60 

0.30 

0.00 ,, 
0 32 64 96 

FIGURE 4.1.2 
Growth of K2(JV) with n 

In Figure 4.1.2 we have chosen p = 1 and the nodes (1.10). This figure 
suggests that K2 (V1) < n0.45log(n) for large n, where log denotes the natural 
logarithm. 

The following examples illustrate the propagation of roundoff errors in Al- 
gorithms 1 and 2. Because of the small amplification of roundoff errors when 
the nodes (1.9) and (1.10) are used, we are able to solve fairly large CV systems 
(1.4) and (1.5) in single precision arithmetic, i.e., with only six significant digits. 

Example 4.2. In this example we solve dual CV systems (1.4) by Algorithm 1 
in single precision arithmetic. Let x E Cn+1 denote the exact solution of (1.4), 
and let x* denote the computed solution. We determine the residual error 

(4.1) r:= V x -f 

by accumulating sums in double precision arithmetic. The norm lirn1K is a good 
estimate for the norm of the error in the solution I1x* - x1ji because VT is 
quite well-conditioned (see Example 4. 1). 

Figure 4.2.1 shows I1rK1j0 when p = 0 and the nodes are defined by (1.9). 
The real and imaginary parts of the right-hand side f e Cn+l are uniformly 
distributed elements in [0, 1], computed by the random number generator 
SURAND of the ESSL program library [5]. The figure shows a slow growth 
of I1rK1j with n. 

The computations for Figures 4.2.1 and 4.2.2 differ only in the ordering of 
the nodes. The matrix VT E C(n+1)x(n+1) used for Figure 4.2.2 is defined by 
the nodes 

(4.2) Zk = exp(27rik/(n + 1)), 0 < k < n, 

for every n > 1 . The nodes (4.2) make VT orthogonal for every n, but yield 
severe amplification of roundoff errors, as shown by Figure 4.2.2. The rapid 
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Offlg IlrIoo 

-2- 

-4- 

V , I I . . " I, n 
0 50 100 150 200 250 

FIGURE 4.2.1 
Growth of i1rK1j with n for p= 0 and nodes (1.9) 

logoj linr 

0- 

-2- 

-4- 

0 50 

FIGURE 4.2.2 
Growth of jjrij( with n for p = 0 and nodes (4.2) 

0- 

-2e 

-4 

-6-/,,,,,,, a 

n 
0 50 100 150 

FIGURE 4.2.3 
Growth of 11rlj. with n for p = 1 and nodes (1.10) 
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log10 1lirn 
0- 

-2 

-4- 

-6L 

n 
0 50 

FIGURE 4.2.4 
Growth of lirn1K with n for p = 1 and nodes (4.3) 

growth of the propagated error is a result of the ordering of the nodes (4.2), 
which is unsuitable because it causes many products in the denominators in 
(3.4) to have tiny magnitude. 

Experiments suggest that the graphs of Figures 4.2.1-4.2.2 are quite insen- 
sitive to the choice of right-hand side vector f, as well as to the choice of 
0 < p < 1, if p is not very close to 1. 

In Figures 4.2.3 and 4.2.4 we set p = 1 and present graphs analogous to 
those of Figures 4.2.1-4.2.2. Figure 4.2.3 shows I1rK1j when the nodes zj are 
given by (1.10) and f = [fj] has elements uniformly distributed in [0, 1]. 
The computations for Figure 4.2.4 differ from those for Figure 4.2.3 only in the 
ordering of the nodes. For Figure 4.2.4 we select for every n > 1 the nodes 
(4.3) Zk := 2cos(7rk/n), 0 < k < n. 

Example 4.3. We consider the solution of primal CV systems (1.5) by Algo- 
rithm 2 using single precision arithmetic. Let x* E Cn+1 denote the computed 
solution, and define the residual error 

(4.4) r' :=Vx* -g. 

10lo 111.111 glO ||'loc 

-6- 

0 50 100 150 200 250 

FIGURE 4.3.1 
Growth of Jjr'jj. with n for p = 0.8 and nodes (1.9) 
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Figure 4.3.1 shows I1r'Kll for p = 0.8 and the nodes (1.9). The right-hand 
side g = [gj]'=o is given by gj := exp(zj). 

Numerous numerical experiments indicate that the residual error (4.4) often 
is somewhat larger than the error (4. 1) for identical matrices VP and right-hand 
sides. Further computed examples can be found in [16]. 

5. CONCLUSIONS 

Fast progressive algorithms are derived for the solution of CV systems, and 
in ??3 and 4 these algorithms are demonstrated to be fairly insensitive to per- 
turbations for suitably distributed and ordered nodes. 
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Addendum. Figure 4.1.1 inspired A. C6rdova, W. Gautschi, and S. Ruscheweyh 
to completely describe the spectrum and eigenvectors of VOJV0H in the paper 
Vandermonde matrices on the circle: spectral properties and conditioning, Nu- 
mer. Math. 57 (1990), 577-591. In particular, they show that K2(VO) = 0(n 12) 
for V0 E C(n+l)x(n+1) defined by the nodes (1.9) with p = 0. A survey of con- 
dition number bounds for Vandermonde matrices can be found in the paper 
How (un)stable are Vandermonde systems? by W. Gautschi, in Asymptotic and 
Computational Analysis (R. Wong, ed.), Lecture Notes in Pure and Appl. Math., 
vol. 124, Dekker, New York, 1990, pp. 193-210. 
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